
September 2010 FoxRockX Page 11

In my last article, I explained what business objects
are and why I had a hard time learning to use them.
Then, I looked at a client application (called NMS)
that brought the ideas home to me. In this issue,
I'll begin to look at the details of using business
objects.
Of course, I can't share the code for my client's
application, and even if I could, it's complex enough
that it wouldn't make a good example. So, to make
the ideas around business objects concrete, I built
a fairly simple Sudoku game. In case you're not
familiar with Sudoku, let me introduce the game.

Sudoku is a logic puzzle. The board is typically
a square divided into a grid. The grid is further
subdivided into equal blocks of cells. The most
common board is 9 x 9, and divided into 9 squares
of 9 cells each, as in Figure 1. The figure also shows
the three types of cell groups: rows, columns, and
blocks.

Figure 1. The standard Sudoku game features a 9x9 grid di-
vided up into nine 3x3 squares. (Game captured from http://
www.websudoku.com/.)

Initially, some subset of the cells contains
numbers between 1 and the grid size (in fact, any
set of symbols can be used, but numbers are most
common). The challenge is to fill all the cells of the
grid so that each row, each column and each block

Understanding Business
Objects, Part 2
A well-designed set of business objects forms the engine for your application, but learning to create
and use business objects has been a struggle for this author.

Tamar E. Granor, Ph.D.
contains each number once. That is, for the 9 x 9
game, each row, column, and block contains all of
the digits 1 through 9. Figure 2 shows the solution
for the game in Figure 1. (A well-designed Sudoku
has only one solution.)

Figure 2. The solution to the puzzle in Figure 1. Each of the
digits 1 through 9 appears once in each row, column and block.

While the standard game involves a square
grid divided into square blocks, variations abound.
One fairly common variation is for the blocks to be
non-square, simply equally-sized subsets of cells,
such as in Figure 3. The blocks are indicated by
the darker lines, and the rules are the same: each
number appears once in each row, once in each
column and once in each block.

Figure 3. This Sudoku variation retains the overall square
shape, but the blocks are not squares. In this version, the rules
are still that each number from 1 to 9 must appear once in each
row, once in each column and once in each block indicated
by the darker lines. (Jigsaw Sudoku captured from http://www.
sudokusplashzone.com)

Page 12 FoxRockX September 2010

The version I've implemented requires the
game to be square, but supports this variation.
It also supports variation of the grid size and the
symbols used in the cells (with the numbers 1 to
grid size as the default).

Designing business objects
Clearly, the key to making business objects useful
is to have the right business objects. So how do you
figure out what business objects you need?

Two key ideas guide this process. The first is
that a business object represents something real
(though "real" can be somewhat abstract). The
second idea, though, is that business objects can
have hierarchical relationships and the object model
should support those relationships.

For my client's application (described in some
detail in my last article), we have business objects
representing the network as a whole, each node,
each shelf, each card, and each setting. These are
combined into various collections, so that you
can start with the network object and traverse
the entire network just by walking through the
collections. Figure 4 shows (a simplified version of)
the hierarchy of objects and collections.

For the Suduko game, it was easy to identify
two objects. We need a game object to represent the
entire game, and a cell object to represent a single
cell of the grid. In between those two is where
things get tricky, but also where business objects
really show their value.

Each cell in Suduko is part of three groups:
a row, a column and a block. While the physical
layout for each kind of group is different (and, in
fact, the physical layout of a block can vary), the
three kinds contain the same number of items and
follow the same rules. Clearly, implementing them
with common code (that is, a class) makes sense.
This leads to a group business object.

Finally, there are operations needed for the
entire set of rows or the entire set of columns or
the entire set of blocks. This leads to one more
business class, the set of groups. Figure 5 shows
the hierarchy of business objects.

Figure 5. Like the NMS hierarchy, the object hierarchy for
Sudoku uses a mix of collections and scalar objects.

Implementing business objects in
VFP
As I said in my last article, the earliest implementations
of business objects in VFP were based on visual
classes such as Container. Later, people realized that
you couldn’t separate implementation from interface
if your business objects were interface objects, and
began to base their business objects on non-visual
classes. Because they're extremely lightweight classes
(that is, don't use much memory), some people chose
to base their business classes on the Line or Relation
base classes.

Figure 4. The business object hierarchy for the Network
Management System features alternating scalar objects and
collections.

September 2010 FoxRockX Page 13

I prefer to make my design decisions more
transparent, so I build business objects from the
Custom and Collection base classes. To date, I haven't
found that I need much common functionality across
business objects for graphical applications; my "base"
business object is simply a subclass of my "base"
subclass of Custom. (That is, cusBase subclasses
Custom, and cusBizObj subclasses cusBase.) For
Sudoku, I subclassed the game and cell classes from
cusBizObj; they're named bizGame and bizCell,
respectively.

To build hierarchies of business objects, I use
collections (introduced in VFP 8). For the reasons
I prefer collections to arrays, see my article in the
November, 2009 issue.

As with Custom-based business objects, I've
subclassed my "base" collection class (colBase) to create
a "base" collection-based business class (colBizObj).
For Sudoku, I subclassed colBizObj for the group
(cbzGroup) and set of groups (cbzSetOfGroups)
classes.

My experience has been that collection classes
work especially well as "manager" objects. In my
client's application, the scalar business objects
like bizNode and bizShelf are consolidated into
manager collections like colNodeManager and
colShelfManager. Although the two collection-
based classes in Sudoku aren't named as managers,
the role they serve is somewhat managerial.

Storing data in business objects
The whole idea of a business object is that it stores
the data necessary to represent some "thing." So,
you add custom properties to a business object to
store that data. In NMS, for example, bizNode, the
node business object has properties holding various
information about the node, such as its address
within the network and its name. The card object,
bizCard, includes properties for the type of card
(circuit board) and the slot where it's stored; in the
new version, where one card can stretch over two
slots, it also has a property to indicate the number
of slots it occupies.

In the Sudoku example, the bizCell object
represents one cell in the game, so its custom
properties include nRow and nColumn to indicate
which cell this is in the grid. It also has nValue that
contains its current value and lFixed to indicate
whether the value is fixed, that is, whether it's
one of the values specified at the start of the
game. bizGame has an nSize property to specify
the grid size; an assign method for that property
ensures that any new value is a perfect square,
since that's one of the rules for Sudoku. (Actually,
there are some variations where that's not a rule,
but this implementation doesn't handle those.)
The collection-based cbzGroup has nPosition that
indicates its position within its set of groups.

Linking business objects
together
Custom properties are also used to represent the
relationships among business objects, that is, object
references to other business objects. For example, in
NMS, bizNode has an oShelves property that points
to a collection of shelves (class colShelfManager).
That class then contains the right number of bizShelf
objects. bizShelf has an oSlots property that points
to a collection of cards (class colCardManager—
by the time I realized that the class name and the
property name should match better, we'd written
and tested a lot of code, so didn't change it).

In the Sudoku game, bizGame has references to
three collections of class cbzSetOfGroups: oBlocks,
oColumns, oRows. Because cbzSetOfGroups is
subclassed from a collection class, there's no need
to add properties to it to point to the individual
cbzGroup objects; adding them to the collection is
sufficient. The same is true for cbzGroup; because
it's a collection, no custom properties are needed
to track the individual cells in the group. (I'll show
how the items get into the groups later in this
article.)

I've also found that backward references up the
containership chain tend to be useful. So in NMS,
bizCard has an oNode property that points directly
to the containing bizNode object, bizNode has
oNetwork to point to the bizNetwork object, and
so forth.

For Sudoku, bizCell has references to the
containing block, column and row objects (all
based on cbzGroup). I haven't found a reason so
far to give cbzGroup or cbzSetOfGroups backward
references.

Backward references, though, do mean that care
has to be taken when destroying these objects. If
these references aren't cleared (nulled), it's possible
to leave objects dangling in memory. A custom
method, CleanUpReferences, high in the inheritance
chain (in cusBase and colBase for Sudoku) provides
a place to put the relevant code. Collections need
to make sure that the method gets called for each
member, so colBase.CleanUpReferences contains
the code in Listing 1.

Listing 1. Every member of a collection needs to clean up its
own backward references, so the custom CleanUpReferences
method of colBase calls the relevant method of every member.
* Call all contained objects to clean up.
* This is generic code. Subclasses will need
* to null specific properties.

LOCAL oItem
FOR EACH oItem IN This FOXOBJECT
 IF PEMSTATUS(oItem, "CleanUpReferences", 5)
 oItem.CleanUpReferences()
 ENDIF
ENDFOR

Page 14 FoxRockX September 2010

The code needed to clean up references in scalar
(non-collection) objects depends on the object. For
bizCell, the code simply nulls the three backward
references (Listing 2).

Listing 2. When the object model contains both forward
and backward object references, it's important to clean
up before destroying the objects. This code, in bizCell.
CleanUpReferences, ensures that bizCell objects can be
destroyed.
This.oRow = .null.
This.oColumn = .null.
This.oBlock = .null.

To ensure that this clean-up happens for each
object in the hierarchy, the top object needs to start
the process. So the CleanUpReferences method of
bizGame contains the code in Listing 3.

Listing 3. Cleaning up object references needs to propagate
downward. This code in bizGame.CleanUpReferences starts
things off.
This.oRows.CleanUpReferences()
This.oColumns.CleanUpReferences()
This.oBlocks.CleanUpReferences()

The Destroy method of bizGame calls the
class's CleanUpReferences method. Since Destroy
proceeds from the container to the contained
objects, this ensures that all the references have
been cleaned up by the time Destroy fires for the
inner objects.

Adding functionality
The second key element of a business class is a set
of methods to provide operations on the data. What
methods you need obviously depends on what the
object represents. Typically, the methods you add
fall into five categories: building and destroying the
object model, storing and retrieving data, retrieving
objects contained in this object, querying data of
this object and manipulating data in this object.
(While the sections that follow show code for many
methods from the Sudoku game, not every method
is shown here.)

Building and destroying the object
model
One set of methods lets you manage the object
hierarchy itself. These methods add and remove
objects, and create the connections among them.
When adding items to collections, I like to assign
keys, so that I can easily find particular members of
the collection. It's not unusual for these methods to
delegate tasks down the object hierarchy.

In NMS, for example, bizShelf has an AddCard
method that's called both when initially constructing
the object hierarchy from stored data and when the user
adds a card through the user interface. bizShelf doesn't
actually do the work, though; it calls the AddCard

method of its oSlots collection (colCardManager
class). In fact, in this case, delegation can come from
even farther up the hierarchy. bizNode also has an
AddCard method. It delegates to the appropriate
bizShelf object.

The colCardManager.AddCard method figures
out whether the specified card can be added in the
specified slot and, if so, creates a bizCard object
and adds it to the oSlots collection. The slot number
is converted to character and used as the key for
the object, making it easy to request the card in a
particular slot.

The object model for the Sudoku game is much
simpler (as are the requirements for managing the
objects since once you build the object hierarchy
for a particular game, its structure doesn't change),
but it follows the same principles. bizGame has
a method called SetupGame (Listing 4), which
instantiates the three cbzSetOfGroups objects. It
then creates all the necessary bizCell objects and
assigns them to the appropriate groups.

Listing 4. bizGame's custom SetupGame method constructs
the objects needed to represent the Sudoku data.
LPARAMETERS nSize

LOCAL nRow, nColumn, oCell

IF VARTYPE(m.nSize) = "N"
 This.nSize = m.nSize
ENDIF

* Create the sets of groups
This.oRows = NEWOBJECT("cbzSetOfGroups", ;
 "bizobjs", "", This.nSize)
This.oColumns = NEWOBJECT("cbzSetOfGroups", ;
 "bizobjs", "", This.nSize)
This.oBlocks = NEWOBJECT("cbzSetOfGroups", ;
 "bizobjs", "", This.nSize)

* Create cells and add them to the right
* groups
FOR nRow = 1 TO This.nSize
 FOR nColumn = 1 TO This.nSize
 oCell = NEWOBJECT("bizCell", "bizobjs")
 WITH oCell
 .nRow = m.nRow
 .nColumn = m.nColumn
 ENDWITH

 * Add it to the right row, column
 * and block
 This.oRows.AddCell(m.oCell, m.nRow, ;
 m.nColumn, "R")
 This.oColumns.AddCell(m.oCell, ;
 m.nColumn, m.nRow, "C")

 * Call a method to handle the block so
 * we can subclass to handle variants
 This.AddCellToBlock(m.oCell, m.nRow, ;
 m.nColumn)
 ENDFOR
ENDFOR

The Init method of cbzSetOfGroups (shown
in Listing 5) handles creation of the individual
cbzGroup objects needed for each set. It receives

September 2010 FoxRockX Page 15

the number of groups as a parameter (for the
standard 9x9 Sudoku game, nGroups is 9) and adds
that many groups to the collection. The position of
the object within the group (that is, the order of
creation) converted to character is used as the key
to the collection.

Listing 5. Each set of groups, represented by a
cbzSetOfGroups object, needs one cbzGroup object
LPARAMETERS nGroups

* Add the specified number of groups to this
* set, using the group number as the key.

LOCAL nGroup, oGroup, cKey

FOR nGroup = 1 TO m.nGroups
 oGroup = NEWOBJECT("cbzGroup", "bizObjs")
 oGroup.nPosition = m.nGroup
 cKey = TRANSFORM(m.nGroup)
 This.Add(m.oGroup, m.cKey)
ENDFOR

To add each bizCell object to the appropriate row
or column, bizGame.SetupGame calls the AddCell
method of oRows and oColumns, which are both
based on cbzSetOfGroups. AddCell receives four
parameters: the bizCell object, the number of the
group to which the cell is to be added, the position
in the group for that cell, and the type of group (row,
column or block) we're dealing with. The method,
shown in Listing 6, finds the right group and calls
its AddCell method, passing along the remaining
parameters.

Listing 6. cbzSetOfGroups.AddCell figures out which group a
cell is to be added to and calls that group's AddCell method.
LPARAMETERS oCell, nGroup, nPosInGroup, ;
 cGroupType

LOCAL oGroup, cKey, lSuccess

oGroup = This.GetGroup(m.nGroup)

lSuccess = .F.
IF NOT ISNULL(m.oGroup)
 lSuccess = oGroup.AddCell(m.oCell, ;
 m.nPosInGroup, m.cGroupType)
ENDIF

RETURN m.lSuccess

cbzGroup's AddCell method adds the bizCell
object to the collection (itself), using the desired po-
sition in the group (converted to character) as the
key. It also calls the cell's SetBackPointer method
to set the cell's backward pointer to the group; the
cGroupType parameter determines which of the
backward pointers is set. cbzGroup.AddCell is
shown is Listing 7, while bizCell.SetBackPointer is
in Listing 8.

Listing 7. The actual work of adding the cell to the group hap-
pens in cbzGroup.AddCell.
LPARAMETERS oCell, nPosition, cGroupType

LOCAL cKey

cKey = TRANSFORM(m.nPosition)
This.Add(m.oCell, m.cKey)

oCell.SetBackPointer(m.cGroupType, This)

RETURN

Listing 8. bizCell's SetBackPointer method uses the
cGroupType parameter to figure out which of the backward
pointers to set, and then points that to the group to which the
cell was just added.
LPARAMETERS cGroupType, oGroup

DO CASE
CASE m.cGroupType = "R"
 This.oRow = m.oGroup

CASE m.cGroupType = "C"
 This.oColumn = m.oGroup

CASE m.cGroupType = "B"
 This.oBlock = m.oGroup

OTHERWISE
 * Should never happen
ENDCASE

Adding a cell to the right block is a little trick-
ier, because the definition of a block can vary. So
another method of bizGame, AddCellToBlock,
is used. In bizGame, this method (Listing 9) uses
the standard Sudoku rules, dividing the grid into
squares whose size is the square root of the over-
all grid's size. (That is, for a 9x9 game, each block
is 3x3.) Arbitrarily, the blocks are numbered from
left to right, row by row, and cells within the blocks
are numbered the same way. To handle variants,
bizGame must be subclassed.

Listing 9. The AddCellToBlock method of bizGame uses
standard Sudoku rules to add the bizCell to the right block.
* Add a cell to the right block. This code
* uses standard Sudoku rules. Subclass and
* replace this code for variants.
LPARAMETERS oCell, nRow, nColumn

LOCAL nBlock, nPosInBlock, nBlockSize

nBlockSize = SQRT(This.nSize)

nBlock = INT((m.nRow-1)/m.nBlockSize) * ;
 m.nBlockSize + ;
 INT((m.nColumn-1)/m.nBlockSize) + 1
nPosInBlock = MOD(m.nRow-1, m.nBlockSize) * ;
 m.nBlockSize + ;
 MOD(m.nColumn-1, m.nBlockSize) ;
 + 1
This.oBlocks.AddCell(m.oCell, m.nBlock, ;
 m.nPosInBlock, "B")

RETURN

For cleaning up the object hierarchy, you generally
need something like the CleanUpReferences method
described in "Linking business objects together"
earlier in this article.

Page 16 FoxRockX September 2010

Retrieving and storing data
You usually need methods that retrieve data from a
data source and that store the data before destroying
the object hierarchy. The details of what methods
are needed vary with the application.

NMS stores network data in a set of tables. (It's
actually a little more complicated than that. The new
version of NMS stores network data as XML, then
reads the XML into a set of tables before converting
it to objects.) The business objects need methods
that read the data from those tables and create and
populate the appropriate objects. They also need
methods to store the data in the objects back into the
tables. So, bizNetwork has a ReadNetwork method
that stores the network level data in the appropriate
properties, and then calls the ReadNodes method of
its oNodes collection (based on colNodeManager).
ReadNodes processes the table of nodes, creating
a bizNode object and adding it to the collection for
each node, then calling the new node's ReadNode
method. This process continues all the way down
the containership hierarchy so that all the data for
the network is added to the object hierarchy. There's
a corresponding set of methods (WriteNetwork,
WriteNodes, WriteNode, etc.) that write data back
from the objects to the tables.

The Sudoku game has much simpler needs for
data retrieval and storage. There's no data to store
between sessions. There is a need, though, to load
data for a game.

My initial design for game data used a comma-
separated text file for each game, containing one
line for each fixed value. Each line was in the
form: row, column, value. bizGame has a method,
AddFixedData (shown in Listing 10), that accepts
a string in the format of that file, and parses it
to populate the game with its initial data. In this
version of the game, the code that instantiates the
game reads the text file into a string and passes it
along to this method.

Listing 10. bizGame's AddFixedData method accepts a string
with the game data and sets up the fixed values.
* Fill in the fixed values for thix game.
* These are provided as a text string with
* one value per line.b Each line is a
* comma-separated triple, giving the row, the
* column, and the value.
* So, for example:
* 1,3,4
* 2,7,1
* would indicate that row 1, column 3 contains
* 4 and row 2, column 7 contains 1.

LPARAMETERS cFixedData

LOCAL aFixedValues[1], nValueCount, nValue, ;
 aOneLine[1], nDataItems

nValueCount = ALINES(m.aFixedValues, ;
 m.cFixedData)

FOR nValue = 1 TO m.nValueCount
 nDataItems = ALINES(m.aOneLine, ;
 m.aFixedValues[m.nValue], ",")
 IF m.nDataItems = 3
 * Process this line
 This.oRows.SetValue(m.aOneLine[1], ;
 m.aOneLine[2], VAL(m.aOneLine[3]), .T.)
 ELSE
 * Skip this line
 ENDIF
ENDFOR

RETURN

After the game was working, I realized that this
format for the data limited the game's functionality.
Later in this series, I'll describe how I introduced
a new file format and additional functionality into
the object model.

Retrieving objects
Business object code (or the code that uses the business
objects) often needs to find another particular object,
so business objects that contain other business objects
typically have methods to retrieve specific member
objects. I generally give such methods a name
beginning with "Get."

In NMS, the bizNetwork object has several
methods for retrieving a particular node—one
looks it up by node number, another by its unique
identifier, and a third by its address in the network.
bizNode has a number of methods for retrieving a
particular card, as well as a method for retrieving a
shelf. Other objects have similar methods.

The Sudoku game's bizGame object has a
method called GetCell to retrieve a cell based on
its row and column; it's shown in Listing 11. It uses
retrieval methods from two objects lower in the
hierarchy. Using those methods prevents bizGame
from knowing too much about the structure of
the objects it contains. The internal structure of
cbzSetOfGroups or cbzGroup can change without
breaking this method, as long as the GetGroup and
GetCell methods continue to return the specified
group and cell objects, respectively.

Listing 11. The GetCell method of bizGame retrieves a bizCell
object based on its row and column.
LPARAMETERS nRow, nCol

LOCAL oGroup, oCell

oGroup = This.oRows.GetGroup(m.nRow)
IF NOT ISNULL(m.oGroup)
 oCell = oGroup.GetCell(m.nCol)
ELSE
 oCell = .null.
ENDIF

RETURN m.oCell

cBzSetOfGroups.GetGroup retrieves a particu-
lar member of the collection, based on its position.
This method (shown in Listing 12) takes advantage
of the key assigned to each group within a set.

September 2010 FoxRockX Page 17

Listing 12. GetGroup retrieves a single group from within the
set, based on its position. Position is used as the key when
groups are added to the collection.
* Return the specified group from this set.
LPARAMETERS nGroup

LOCAL cKey, oGroup

cKey = TRANSFORM(m.nGroup)

TRY
 oGroup = This.Item[m.cKey]
CATCH
 oGroup = .null.
ENDTRY

RETURN m.oGroup

The GetCell method of cbzGroup (Listing 13)
accepts a position as parameter and returns the cell
in that position in the group. GetGroup and GetCell
have the same structure; each attempts to grab the
member of the collection with a particular key.
TRY-CATCH handles the possibility that there is
no such member; in that case, the method returns
.null.

Listing 13. cbzGroup.GetCell retrieves the bizCell in a
specified position.
* Get the specified cell from this group.
LPARAMETERS nCell

LOCAL cKey, oCell

cKey = TRANSFORM(m.nCell)
TRY
 oCell = This.Item[m.cKey]
CATCH
 oCell = .null.
ENDTRY

RETURN m.oCell

Querying data
In my experience, business objects tend to have lots
of methods to answer questions about their status.
Many of these methods are wrappers around
fairly simple conditions; as with "Get" methods for
object retrieval, using methods instead of putting
the conditions right into the code makes it safer to
make changes to the objects being queried. Query
methods often have names beginning with "Is" or
"Can" or "Has." (Some of these methods implement
business rules, letting you know whether the rules
have been followed or not.)

In NMS, for example, bizNode has a method
called IsOnline that returns a value indicating
whether the node is currently online. bizCard has
several query methods, including a few to determine
whether the object represents a particular kind of
card.

The Suduko game uses a number of query
methods as well. bizCell has two, IsEmpty and
IsFixed. IsEmpty returns .T. if the nValue property

is set to 0, that is, if no valid value has been assigned
to the cell. IsFixed returns the value of the cell's
lFixed property.

cbzGroup has a whole set of "Is" methods. They
include IsFull (Listing 14), which checks whether
all cells have been assigned a value, and IsValid
(Listing 15), which checks whether the set of values
in this group is valid according to the rules of the
game.

Listing 14. cbzGroup's IsFull method checks whether all cells
in the group have values.
LOCAL lReturn, oCell

lReturn = .T.
FOR EACH oCell IN This FOXOBJECT
 IF oCell.IsEmpty()
 lReturn = .F.
 EXIT
 ENDIF
ENDFOR

RETURN m.lReturn

Listing 15. The IsValid method of cbzGroup checks to see
whether the values in the group's cells are unique.
LOCAL oCell, lReturn, aValuesUsed[This.Count]

* To determine whether the set of values in
* this group is valid, loop through. For each
* cell, if it's not empty, check the
* corresponding array element. If it's .T.,
* then we previously found this value, so the
* group is not valid. If the array element
* is .F., then set it to .T. to indicate that
* we've seen this value.

lReturn = .T.
FOR EACH oCell IN This FOXOBJECT
 IF NOT oCell.IsEmpty(m.oCell)
 IF aValuesUsed[oCell.nValue]
 lReturn = .F.
 EXIT
 ELSE
 aValuesUsed[oCell.nValue] = .T.
 ENDIF
 ENDIF
ENDFOR

RETURN m.lReturn

The IsComplete method (Listing 16) uses IsFull
and IsValid to figure out whether this group has a
complete set of values (implementing the business rule
about what constitutes a complete group). cbzGroup
has several other query methods as well.

Listing 16. cbzGroup.IsComplete checks whether the group
has a complete set of values.
RETURN This.IsFull() AND This.IsValid()

cbzSetOfGroups has only one query method;
IsComplete checks each group in the set for com-
pleteness. It's shown in Listing 17. Again, using a
method of the contained object (bizGroup) rather
than performing the checks directly means that the
structure and behavior of bizGroup can change
without breaking this method.

Page 18 FoxRockX September 2010

Listing 17. The IsComplete method of cbzSetOfGroups uses
cbzGroup.IsComplete to check each group in the set.
LOCAL oGroup, lReturn

lReturn = .T.

FOR EACH oGroup IN This FOXOBJECT
 lReturn = m.lReturn AND oGroup.IsComplete()
ENDFOR

RETURN m.lReturn

bizGame also has an IsComplete method,
shown in Listing 18. It checks each of the three sets
of groups (the rows, the columns and the blocks)
for completeness. (It is actually possible for one set
of groups to be complete, while another is not.)

Listing 18. The bizGame-level IsComplete method checks the
rows, columns and blocks for completeness.
LOCAL lReturn

lReturn = This.oRows.IsComplete()
IF m.lReturn
 lReturn = This.oColumns.IsComplete()

 IF m.lReturn
 lReturn = This.oBlocks.IsComplete()
 ENDIF
ENDIF

RETURN m.lReturn

Query methods don't have to just return a logical
value; they can also assemble data that answers
the question. bizGame has a pair of methods
(CheckForConflicts and CheckGroupsForConflicts)
that populates a collection with a list of cells
containing values that are, in some way, in conflict
with other data in the grid. CheckForConflicts is
shown in Listing 19 and CheckGroupsForConflicts
in shown in Listing 20. CheckGroupsForConflicts
calls the GetConflicts method of cbzGroup (Listing
21) for each group in the set to retrieve a collection
of conflicts for that group. Like the IsComplete
methods, these methods implement a set of business
rules.

Listing 19. bizGame's CheckForConflicts method creates a
collection of cells that are in conflict with other data in the grid.
LOCAL oConflicts, oGroupConflicts, oRow, ;
 oColumn, oBlock, oConflict

* Call lower-level method to do the actual
* checking and accumulate the results

oConflicts = CREATEOBJECT("Collection")

This.CheckGroupsForConflicts(;
 This.oRows, oConflicts)
This.CheckGroupsForConflicts(;
 This.oColumns, oConflicts)
This.CheckGroupsForConflicts(;
 This.oBlocks, oConflicts)

RETURN m.oConflicts

Listing 20. The CheckGroupsForConflicts method of bizGame
loops through a set of groups, retrieving a collection of conflicts
from each and adding those to the result.
LPARAMETERS oGroupsToCheck, oConflicts

LOCAL oGroup, oGroupConflicts, oConflict, cKey

FOR EACH oGroup IN oGroupsToCheck FOXOBJECT
 oGroupConflicts = oGroup.GetConflicts()
 FOR EACH oConflict ;
 IN oGroupConflicts FOXOBJECT
 cKey = "R" + TRANSFORM(oConflict.nRow) ;
 + "C" + TRANSFORM(oConflict.nColumn)
 IF oConflicts.GetKey(m.cKey) = 0
 oConflicts.Add(m.oConflict, m.cKey)
 ENDIF
 ENDFOR
ENDFOR

RETURN

Listing 21. cbzGroup's GetConflicts method returns a
collection listing cells in the group that conflict with other data.
* Return a collection of cells in this group
* that are in conflict. To be in conflict
* means that with their current values, the
* cells are not consistent with the group
* being valid. Fixed cells are always valid,
* so when a varying cell and a fixed cell have
* the same value, only the varying cell is
* included in the return.

LOCAL oConflicts, oCell, ;
 aValueCount[This.Count], nValue

oConflicts = CREATEOBJECT("Collection")

FOR nValue = 1 TO This.Count
 aValueCount[m.nValue] = 0
ENDFOR

* Need to make two passes. In pass 1, count
* the usage for each value. In pass 2, make
* the list of conflicts.

FOR EACH oCell IN This FOXOBJECT
 IF NOT oCell.IsEmpty()
 aValueCount[oCell.nValue] = ;
 aValueCount[oCell.nValue] + 1
 ENDIF
ENDFOR

FOR EACH oCell IN This FOXOBJECT
 IF NOT oCell.IsEmpty()
 IF aValueCount[oCell.nValue] > 1 AND ;
 NOT oCell.IsFixed()
 oConflicts.Add(m.oCell)
 ENDIF
 ENDIF
ENDFOR

RETURN m.oConflicts

Manipulating data
Most business objects need methods that manipulate
their own data. This is where the action takes place.
These methods let you change data based on user
actions (or other actions—in NMS, some data
changes reflect changes occurring on the actual
network hardware).

September 2010 FoxRockX Page 19

In NMS, one of the key concepts is that a node can
be running and responsive ("online"), not responding
("offline") or in a maintenance mode ("forced
offline"). So bizNode has a method SetOnlineStatus
that changes the node's cStatus property to reflect its
current status.

The Sudoku game's bizCell class has a SetValue
method (Listing 22), called to change the number
assigned to a particular cell, clearly the key action
in this game. The method ensures that the cell can
be changed (that is, that it's not fixed) and then,
if permitted, assigns the new value. The same
method is used during both set-up and game play,
so it accepts an optional lFixed parameter, used to
set the lFixed method. bizGame's AddFixedData
method passes .T. for this parameter, in order to set
up the initial set of values.

Listing 22. bizCell's SetValue method changes the number
assigned to a cell.
* Set this cell to the specified value. If
* lFixed is passed and true, mark this value
* as fixed.

LPARAMETERS nValue, lFixed

LOCAL lSuccess
* Check whether this cell is already fixed.
IF This.IsFixed()
 lSuccess = .F.
ELSE
 This.nValue = m.nValue
 This.lFixed = m.lFixed
ENDIF

RETURN m.lSuccess

cbzSetOfGroups and cbzGroup also have
SetValue methods that figure out which object to
talk to and delegate the operation down to that
object.

Engine complete
Once you've built a set of business objects that
handle the types of operations described above, you
have an engine for your application. At this point,
you can perform whatever task the application
is for by instantiating your business objects and
calling on their methods. For Sudoku, for example,
you could play the game from the Command
Window by instantiating bizGame, handing it
some initial data and then making calls to the
SetValue method to change data and to IsComplete
and CheckForConflicts to find out whether you've
finished the game or introducted conflicts.

However, few users want to use an application
that way and certainly, Sudoku wouldn't be much
fun without a user interface. In my next article, I'll
look at how you connect business objects to the
user interface.

The downloads for this article include the
complete Suduko game.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s So-
lutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. She currently focuses on working with
other developers through consulting and subcontract-
ing. Tamar is author or co-author of ten books includ-
ing the award winning Hacker’s Guide to Visual Fox-
Pro, Microsoft Office Automation with VisualFoxPro
and Taming Visual FoxPro’s SQL . Her latest collabo-
ration is Making Sense of Sedna and SP2, coming out
this year. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a Mi-
crosoft Support Most Valuable Professional. In 2007,
Tamar received the Visual FoxPro Community Lifetime
Achievement Award. You can reach her at tamar@thegra-
nors.com or through www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2010 ISYS GmbH. This work is an independently produced pub
lication of ISYS GmbH, Kronberg, the content of which is the property of ISYS
GmbH or its affiliates or third-party licensors and which is protected by copyright
law in the U.S. and elsewhere. The right to copy and publish the content is reserved,
even for content made available for free such as sample articles, tips, and graphics,
none of which may be copied in whole or in part or further distributed in any form
or medium without the express written permission of ISYS GmbH. Requests for
permission to copy or republish any content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0, FoxTalk and Visual Extend are trademarks of ISYS GmbH. All product names or services
identified throughout this journal are trademarks or registered trademarks of their respective companies.

